

Masters of Negotiated Studies: Negotiated Project 1

Advanced
Programming Systems
C++ In Games
Development
Christopher Boyce

Student Number: 19016871
Email: b0196871j@student.staffs.ac.uk

Supervisor: Shaun Reeves

1

Table of Contents
Glossary ... 3

Key Words ... 3

Section 1 : Introduction .. 4

1.1 Aims .. 4

1.2 Objective .. 4

1.3 Background .. 5

1.4 Project Plan .. 5

Section 2 : Literature Review .. 6

2.1 Data Containers .. 6

2.2 Array .. 6

2.3 Vector .. 7

2.4 Maps.. 7

2.5 Binary Tree .. 8

2.6 Templates .. 9

2.7 Smart Pointers... 10

2.8 Try and Catch and Throw .. 10

2.9 Lambda Functions ... 11

2.10 Linked Lists .. 11

2.11 Stacks .. 13

2.12 Queues .. 13

Section 3 : Testing ... 14

3.1 League Table (Binary Tree) ... 14

3.2 Battle Pass (Linked List) ... 15

3.2 Settings Menu (Stacks & Templates) .. 15

3.3 Main Menu (Queues) .. 16

Section 4 : Analysis of Education Resources ... 16

Section 5 : Critical Evaluation/Conclusion .. 17

Recommendations / Future Work .. 17

Bibliography .. 19

Appendices .. 20

Appendix 1: Stack Menu Creation (Tutorial 1) .. 20

Appendix 2: Binary Tree Creation (Tutorial 2) .. 39

Appendix 3: Link List Creation (Tutorial 3) .. 54

2

3

Glossary
UE5: Unreal Engine 5 is a popular game engine created by Epic Games and uses C++ for

development.

Data Containers / Containers: These data structures store values and virtual objects; examples

include Lists, Arrays, and Maps.

Algorithm: A set of instructions that is followed to perform a task.

STL: Standard Template Library is the original software library that Alexander Stepanov developed

for C++.

Key Words
C++, Unreal Engine, Advanced Programming, Games Development, Education, Practical Tutorials

4

Section 1 : Introduction
1.1 Aims

Investigating and developing a suitable framework for learning purposes incorporates

programming fundamentals for a technical game engine.

1.2 Objective

• Identify the uses and solutions for the following: Lists, Arrays, Maps, Non STL Data
Structures, Link Lists, Stacks, Queues, Binary Trees, C++ Templates, Lambda
Functions, Try-Catch, and Smart Pointers.

• Identify and develop suitable solutions for Unreal Engine Development using C++.
• Detail suitable testing methods for the framework and each potential learning point.
• Highlight suitable learning methods for successful attainment from an audience

perspective.

5

1.3 Background
Today’s games industry requires much knowledge as a programmer to perform tasks effectively and

efficiently; many hobbies and undergraduates cover the main topics of C++ early in their

programming careers and then pursue a game engine of their choosing once the base knowledge is

understood. This report will cover the more advanced features of C++, give examples in C++, and

then implement them into game engines. Finally, work alongside tasks will be created in Unreal

Engine to get hands-on with the concepts and produce a small feature within a game.

The first topic covered is Data Containers, including Lists, Arrays, and Maps, covering the search and

sorting algorithms associated with them. The following section will cover non-STL data structures

such as link lists, stacks, queues, and binary trees. Finally, C++ Templates, Lambda Functions, Try-

Catch, and Smart Pointers will be explored to help improve understanding of writing code. Once

these topics are covered, the reader should have a greater understanding of advanced C++ concepts

and be able to implement them in their future coding endeavor.

1.4 Project Plan

The project will commence by conducting thorough research on each selected topic. We will begin by
examining the integration of each learning topic into C++, encompassing use cases, implementation
details, and critical functions essential for users to grasp the feature. Examples of code will be provided
for developers to use as a reference. Afterward, our focus will shift to comprehending how these
features are incorporated into the Unreal Engine.

Following this initial research phase, an outline of the framework will be developed. This involves
formulating a plan for each learning topic and identifying how to create a practical use case within the
engine. This plan will then be transformed into a working product, accompanied by a well-
documented creation process, allowing the reader to follow along.

To conclude, once the research is complete, a series of educational resources, alongside a framework,
will be created, designed to aid the reader in their skill development.

Commented [SR1]: “an outline for a framework will be
developed.”

6

Section 2 : Literature Review

2.1 Data Containers
Data containers like Lists, Arrays, and Maps are fundamental parts of storing data elements for use

in code. Critical fundamentals must be considered when using these containers, especially when

searching and sorting the data within them. In game development, this concept can be related to

scoreboards. The user may want to display the players’ scores in descending order, showing the

highest score at the top. To achieve this, all the scores must be found and ordered accordingly.

Additionally, searching through the data can help locate a unique user on the scoreboard and display

the scores surrounding them.

2.2 Array
An array is a fixed-size collection of elements of homogeneous data types. Array sizes are declared at

compile time and accessed via an index. Arrays are stored in consecutive memory locations, allowing

for efficient access. However, due to this reason, their size cannot be changed dynamically (Li &

Roberts, 2023).

To search an Array using the Standard Library Function “std::find(),” the user needs to provide three

parameters. The first parameter is the starting point of the Array, the second parameter is the

endpoint of the Array, and the third parameter is the value that needs to be searched for. If the

value is found in the Array, the function will assign it to a variable (Grimes & Bancila, 2018).

To sort an Array is very similar to using the Standard Library Function “std::sort().” This function takes
two or three parameters. The most simplistic is to pass at the start and the end of the Array, and it
will sort them depending on their type; for numerical values, it will sort them from smallest to biggest,
and for Strings and Chars, it will be lexicographical (Grimes & Bancila, 2018). If a more complex sorting
method is needed or a unique sorting approach is required, the user can define the third parameter,
a function to specify how they want the data sorted.

7

2.3 Vector
A vector is a dynamically adjustable collection of homogenous data types. It allows for inserting,

deleting, adding, and removing elements within the vector. Due to this, vectors handle memory

management. For example, adding data to the vector reallocates memory to accommodate more

elements, ensuring efficient handling of dynamic resizing.

Vectors use the “push_back(10)” function to add them to the vector. In this demonstration, three

integers are inserted into the vector. Accessing specific elements is shown using indexing, such as

“intVector[1]”, retrieving the second value in the vector. There is an example of how to iterate

through the vector using a For Loop if the user needs to access all the data.

The “pop_back()” function showcases the removal of the final element from the vector, showing

data removal capability. Furthermore, the “clear()” function removes all the data from the vector.

Finally, the “empty()” function returns a Boolean value if the vector has any elements.

2.4 Maps
Maps stores a list of pairs, referred to as Key and Value. Maps offer efficient searching using the key

value. Maps allow for searching, inserting, and deleting elements using these keys. There are two

kinds of maps: a default map sorts the elements based on the value of the keys, and an unordered

map stores the elements in the order they are inserted (Dmitrović, 2020). Maps are considered an

associated container due to one value being linked to another data element; other examples would

include Multi-Maps and Sets (Deitel & Deitel, 2016).

The “map.find()” function utilised a binary search function that looks efficiently through the keys.

This is possible due to the sorted nature of the Map; therefore, it can see if the key is larger or

smaller than the value being searched for; it can then repeat this process until it finds the key. This is

important when looking through a large data set and scales logarithmically with the data set size

(Deitel & Deitel, 2016).

“Map.insert()” is a function that will add a new pair to the Map if they follow the parameters defined

by the Map. The Map will not add the pair if the inserted key is not unique and will do nothing.

“Map.erase()” takes a key and will then remove the pair with the corresponding key from the Map

(Deitel & Deitel, 2016). When referring to the pair when isolated, the developer uses the

“element.first” to refer to the key and the “element.second” to refer to the value.

8

2.5 Binary Tree
Binary trees are a hierarchical data structure. The data structure enters at the root, and off this node,

there are two child nodes. The data is looked at; if this is not the data that is being searched for, it will

go to the left branch. This is done in C++ as pointers to the left and right nodes. Binary trees are used

for efficient data storage and searching and sorting operations (Aho, et al., 1983).

Before creating the tree, nodes need to be created. This will store the data type on each node and

point to the left and right branches. Finally, on the branch, the developer needs to make a constructor

to initialize a node with a value. For this example, a binary tree using integers will be created.

After making this class, the binary tree class will need to be created. This will first have to store the

root node that will be accessed first. There will need to be a constructor for the binary tree that can

initialize the tree with no current root node.

Insert

The insert function adds new data to the binary tree while keeping the correct order. To do this, a

recursive approach looks for the appropriate location on the tree for data insertion. Initially, it checks

that the root node is null and then checks the current node value. If the data is smaller, it navigates to

the left child node; if it is larger, it moves to the right. This process repeats until the correct position

9

for the new data is found, ensuring that the data is placed in the tree in the correct order. (Weiss,

2013)

Search

The search function allows the user to access and see if there is a specific value in the tree. It uses the

same recursive checks to navigate the tree. It starts from the root of the tree and checks the current

node, and if it will, then if not, the targeted value will compare with the current node value. If it is not

the target value, it compares the current node’s data and, based on the result, proceeds either to the

left or right subtree. It will then repeat this process until finding the target; otherwise, it will return

null if the value is not found. (Weiss, 2013)

2.6 Templates
Templates are a feature that allows the developer to write generic code to work with different data

types. Templates provide a way to define functions, classes, or data structures that can operate on

data of various types without having to rewrite the same code for each specific type. Writing generic

code is helpful because it allows for code reusability, meaning more maintainability for large code

bases; it also allows flexibility in the code when the program knows what data type will be passed in

(Vandevoorde & Josuttis, 2017).

In this example, this template will swap any data type’s values. The top of the code is how to define a

template function. From then on, the developer must use generic variable names as they do not know

which data type it will be.

10

2.7 Smart Pointers
Smart pointers in C++ are specialized tools similar to raw pointers pointer but automatically manage

memory when the program does not need to access the data. There are three types of smart pointers.

The first is Unique Pointers.

Unique pointers have exclusive ownership of an object. This ensures there is only one owner of the

object and then it can automatically deallocate the memory when the object is destroyed. Unique

pointers are move-only, which means they cannot be copied, and they transfer ownership when

moved to a new object. (Lippman, et al., 2012)

Shared pointers allow multiple pointers to share ownership of the allocated memory. The memory is

deallocated only when there are no more shared pointers referencing the memory. This feature

simplifies the sharing of values between different parts of a program and helps with memory

management, reducing the chances of memory leaks. (Lippman, et al., 2012)

A weak pointer is used with sharded pointers to break potential reference cycles. This is when two

objects refer to each other. This can cause memory errors as each one will keep the other from being

deallocated. To avoid this, a weak pointer can be used to check if each object is using the memory by

running a watcher or checking function to see if the memory is being used. It can also be used to check

the existence of an object. (Lippman, et al., 2012)

2.8 Try and Catch and Throw
Using try-and-catch statements in C++ allows the user to run functions that will not always be possible.

The try statement allows the code to run in the function, and if it is not possible to complete, it will

11

use the throw function to go to the catch statement, which can either try a different operation or run

an error message. They are helpful because they provide a way of handling runtime errors. This gives

the program robustness and allows it to keep running despite an error. This program allows the user

to input a number; if they input a number, it will print it into the console. If they do not input a valid

number, it will throw the program to a catch, outputting an error message to the console. (Green, et

al., 2020)

2.9 Lambda Functions
Lambda functions, or inline functions, express anonymous functions without a function name. They

are typically used when a short operation needs to be done. Lambda functions are helpful in C++

because they allow for concise code and easier readability due to the operation being done in the

current function. They also improve encapsulation as they have a limited scope, meaning there is no

unintended access to variables outside the function.

This lambda function example is used to add together numbers and can be used in the main class of

this program. In a lambda function, the lambda nature is indicated by square brackets “[].” In the

brackets, input parameters are defined with their types and names, like a regular function. Following

this, the arrow operator “->” is used to show the return type from the body of the code. Finally, in

curly brackets, “{}” holds the operation that is defined.

2.10 Linked Lists
Linked lists are non-STL data structures where node elements are connected through pointers. Each

node on the list contains data and a pointer to the next node. This allows for easy traversal between

elements in memory without the need for contiguous memory. Linked lists are dynamic, which

means that data can be added and removed easily, but they are slower when searching for specific

elements because they require traversing the list from the beginning. There are multiple types of

linked lists, including singly linked lists, which point to the next object in the list; doubly linked lists,

which point to both the previous and next locations in memory; and circular linked lists, where the

last node’s pointer points back to the start of the list (Carey, et al., 2019).

12

When making a linked list, the developer must first make a class for the node. This will store the data

in the linked list and the pointer to the next value in the chain. It is essential to make a constructor

that assigns the value and sets the following value to a null pointer, as it has no value.

Once the node has been created, the next step is to construct the Linked List class. To begin, it is crucial

to make the head of the linked list. This head serves as the initial link in a chain, with each successive

element being added under the last in the chain.

This next element is to create a constructor. This must set the head to be a null pointer, as when

constructing the Linked List, there may be no data to insert until later in the program.

The script needs defined functions within the class body that the developer will access to manipulate

the Link List. This example shows how to insert data into the class. It first creates a new node with the

value provided and performs serval checks. The first to see if the linked list is empty and will set it to

the top of the chain; if not, it will traverse down the list by checking the next pointer value, and if it is,

it will assign it; this repeats until an empty node is found (Drozdek, 2012).

13

2.11 Stacks
Stacks are a data structure used in C++ that follow the Last in, First Out principle, meaning the first

object on a stack will be the last one removed. Stacks use the “push(x)” function to insert an element

on the top of the stack. The “peek()” function is viewing the data on the top of the stack. When

accessing data lower, the data above needs to “pop(),” which will remove the top element of the stack

to access the data below. This data that is removed is no longer part of the stack. Another essential

function is “isEmpty(),” which returns a Boolean value indicating if there is data in the stack. This

function helps users check if there is data in the stack before attempting to access a null pointer

(McDowell, 2015).

2.12 Queues
Queues represent a data structure that operates on the first in, first out principle. This means the first

element that is added to the Queue is the first that is removed. The Queue uses different terminology

from a stack but the same function names. Enqueue is the act of adding an element to the back of the

Queue in C++. This is done using the “push(x)” function. The Dequeue or “pop()” function removes the

front of the Queue referred to as the head. “front()” function exposes the front element of the front

of the Queue without dequeuing them to be manipulated. Additionally, there are functions to check

if the queue “isEmpty()” is similar to stacks and a function to check the “size()” of the Queue

(McDowell, 2015).

14

Section 3 : Testing
Black-box testing is a software testing method that only focuses on the application’s functionality. It

does not look at the internal code or logic of the software. Testers concentrate on inputs and

outputs and do not need to know the system’s internal workings. This test plan outlines scenarios,

test cases, and expected outcomes based on the software’s requirements or specifications (Keploy,

2023 A).

White-box testing is a testing of internal code and functionality. The primary goal of white-box

testing is to ensure that internal functions work correctly, including checking that differing code

paths and internal data structures are correct. White box testing includes unit testing, integration

testing, and system testing (Keploy, 2023 B).

3.1 League Table (Binary Tree)

Blackbox Testing

Whitebox Testing

Scenario Test Method Outcome

Data Loads into Table Open Menu and Visual See table load Table Loads all 100 inputs

Data Loaded is correct Compare Loaded Data to Data Table All Data is correct and link to player name

Search Bar allows for input Enter Random Letters and Numbers Search Bar Works

Search bar can find a valid name
Enter Valid Name and wait for

response

Gives player output from that correct player

input

Search bar can find a valid score
Enter Valid score and wait for a

response

Gives player output that is correct from the

players input

Return Results text is updated when entered
Enter Valid Name and wait for

response

The text updates every input letter until

correct (At the Start it says TEXTBLOCK)

Test Name Function Definition Expected Outcome Pass / Fail Comments

UT_BinaryTreeInsertData
Data from the Data Table is added to

the Binary Tree
Binary Tree has all elements inserted Pass

BP_UnitTesting: Assertion

passed (Insert Function

Sucess)

UT_BinaryTreeInsertionOrder
Data from the binary Tree has been

inserted order via the score function

The binary tree has elements ordered all

elements
Pass

BP_UnitTesting: Assertion

passed (InsertionOrder

Success)

UT_BinarySearchFunction

Binary Search Function uses the

algorithm to more effectively search

the binary tree

Data is returned Pass

BP_UnitTesting: Assertion

passed (BinarySearch

Sucessful)

UT_OrderSearchFunction
In Order Search Function takes more

steps of find answer
Data is returned Pass

BP_UnitTesting: Assertion

passed

(OrderedSearchFuntion

Sucessful)

UT_InOrderTraversal Returns Binary Tree in order Array of all data is made in numerical order Pass

BP_UnitTesting: Assertion

passed (InOrderTraversal

Success)

UT_ReverseOrderTranversal Returns Binary Tree in reverse order
Array of all data is made in reverse Numerical

order
Pass

BP_UnitTesting: Assertion

passed

(ReverseOrderTraversal

Success)

15

3.2 Battle Pass (Linked List)

Blackbox Testing

Whitebox Testing

3.2 Settings Menu (Stacks & Templates)

Blackbox Testing

Whitebox Testing

Scenario Test Method Outcome

Skins Loads into Boxes Check all 10 battle pass skins appear Extra Box appears on the end

Highlight over weapon changes main UI

weapon Appearance

Highlight over all 10 weapons and see

if it changes

All 10 weapons appeared when cursor

hovered over

Equip button changes skin in game
Press the equip button and go into

the game repeat with random skins
Each skin can be equipped in game

Equipped weapon is the default on the UI

weapon

Equip weapon and then un-hover

cursor

Weapon reverts to the equipped item at the

time

Menu interactions work with the main menu

and back button

Make sure going between pages

works and equipped item stay the

same

Item is saved and going between pages

doesn’t change this.

UT_GetPos
The position is returned to the based

of inputted value

The correct position of the input data should

be returned
Pass

BP_UnitTesting: Assertion

passed (Find Pos Success)

UT_LinklistInsertStart
Insert function adds to the head of

the link list not the start

New head of the link list should be the

inputted value
Pass

BP_UnitTesting: Assertion

passed (Add Node Sucess)

UT_LinkListDelAtPos
Deletes value based of position

entered
Deleted data from specified node Pass

BP_UnitTesting: Assertion

passed (Delete At Pos

Correct)

Test Name Function Definition Expected Outcome Pass / Fail Comments

UT_LinkListAddNode
Checks that data has been added to

the linked list.

Elements are added to the link list and the

start of the list has a valid head.
Pass

BP_UnitTesting: Assertion

passed (Insert At First Sucess)

& BP_UnitTesting: Assertion

passed (Checked Not Null)

Scenario Test Method Outcome

Opening Settings Menu Enters you into new

settings menu panel
Press the settings button and see Transitions to the new page

Pressing corresponding panel opens correct

submenu

Press each button and visually check

the panel appearing
Each one opens the correct panel

Crosshair Sub Menu works when in gameplay

sub menu
Check crosshair settings menu It opens correctly

Crosshair selection works and saves to in

game

Select a crosshair and enter the game

to see if it changes

It changes to the corresponding crosshair

correctly

Back buttons on all sub menus take you back

a singular menu
Open all submenus and close them All of them close correctly

Graphics and animation play when opened Open all submenus
Animations don’t always play and some of

the menus have inconsistencies

Changes in sensitivity save to in game and

when coming back to the menu

Change sensitivity and feel the

change in game. Come back to the

menu and make sure it is the same

value

All of the step work correctly and sensitivity

is saved in menu and in game.

Back button to main menu exits the settings Press back and see if it works. Back functionality is correct

Test Name Function Definition Expected Outcome Pass / Fail Comments

UT_StackPush
Element of data is pushed onto the

stack

Inserted element is added to the stack and

check to see if the value is correct
Pass

BP_UnitTesting: Assertion

passed (Push Onto the Stack)

UT_StackPop
Element of data is removed from the

stack

Inserted element is then removed from the

stack
Pass

BP_UnitTesting: Assertion

passed (Pop Operation

Sucessful)

UT_StackIsEmpty
Returns a bool is the stack is empty or

not

Insert data and run the function should return

false then remove the elements and run

again

Pass

BP_UnitTesting: Assertion

passed (Stack Not Empty) &

BP_UnitTesting: Assertion

passed (Stack is Empty)

UT_StackPeek
The data on the top of the stack is

shown

Data inserted on the stack should be accessed

through this function
Pass

BP_UnitTesting: Assertion

passed (Peek Operation

Successful)

16

3.3 Main Menu (Queues)

Blackbox Testing

White box testing for this class is unnecessary due to its use of the integrated TQueue Data Structure

compared to the Stack, Link List, and Binary Tree. This means that the only functionality testing is

done in black box testing.

Section 4 : Analysis of Education Resources

Three topics from the research were picked to make educational tutorials. These topics were Stacks

(Appendix A), Binary Trees (Appendix B), and Linked Lists(Appendix C). Using other educational

resources online and university-provided tutorials to gather teaching methods, each topic was made

into practical applications for programmers.

Each of the tutorials was created with undergraduates as the target audience; therefore, basic C++

knowledge was expected, but knowing there was a wide range of students with varying knowledge

of Unreal Engine, it assumed that the reader had not interacted with this software before. Each task

was broken down into clear and concise steps, each listed on the front content page for easy

understanding. Each project’s introduction explains the topic being covered and the use cases and

requirements for software that was needed to develop them. The inspiration for this was “Code

Academy,” (Code Academy , 2022) which uses defined clear topics and breaks down the steps into

small, readable paragraphs.

Each task step had keywords in bold to ensure the student visually saw the critical parts of each step.

This included name conventions, files and folders, and essential buttons to press. To ensure the

student could see all steps, screenshots and videos under each instruction were used to visualize the

changes to the project. This gives the reader more context to the action that is being performed.

Inspiration for this was the Unreal Engine Documentation (Unreal Engine Docs, 2023), which uses

this to separate large chunks of text for the user; this system clearly has a benefit with complex

subjects and is used throughout all documentation.

At design points for the menus, the reader was allowed to follow the pre-created tutorial or to make

their own version; at this point, advice was given to the user on how to make a personalized menu

and topics about menu creation. This allowed the user to create something unique at the end, which

they can use in a further project.

All blueprints for each topic were integrated through screenshots and showed the progression steps

throughout the project. C++ was used extensively, so each script was broken down into many

screenshots. Each screenshot included the line numbers so the reader could refer to them for easy

following, and the code had several in-depth comments about the functionality. At the end of an

Scenario Test Method Outcome

When game starts main menu appears Start the game and visually check It appears

When “SubMenu” is pressed it brings up the

correct “SubMenu” eg. Store, Battlepass and

League

Traverse through the store battle pass

and League pages
Each menu is accessible

Can return from each submenu to the main

menu
Go to a sub menu and return to them Each menu returns to the main page

Settings loads when pressed Open the settings menu Goes to the menu

Returns from the settings menu. Important

due to jumping between Stack and Que

Method

Press back from the settings menu Goes to the menu

Animations Play each time from returning

from each menu

Watch for animation when returning

to the main menu
Animations play

17

advanced script was a “Common Issues” section, which included steps for debugging code. Included

in this section was a link to GitHub of the complete code for the developer if they were struggling to

read or debug the code, allowing them to progress after inspecting it.

At the end of each tutorial, extension tasks were given to readers who wanted to complete more

steps in the tutorial. This tutorial consisted of adding to the work that had been completed but

something achievable without supervision. A video of the completed task was shown to explain the

task in better detail.

In advanced topics such as Binary Trees, graphs and visual aids were created to understand the code

flow. This was also used when breaking down all the functions and variables in a script, as there was

a high amount.

Each tutorial was made so the user had more options and control of the engine. This was done by

design to slowly stop handholding and allow users to make design and coding decisions themselves.

This was a critical part of learning the processes; therefore, basics such as creating a script and

making menus were not repeated but still referred to in the written actions.

Section 5 : Critical Evaluation/Conclusion
Throughout this report, various advanced programming skills were covered and applied to the

development of games using Unreal Engine 5 and C++. The primary objectives are to identify and

provide solutions, integrate them into an Unreal Engine project, and outline practical learning

approaches for the audience.

Data containers such as binary trees, stacks, and link lists highlighted different solutions for storing

data compared to STL-Data containers. Each shows a unique use case and benefits potential

improvements to efficiency and code complexity. Stacks stood out in the settings menu as a great

solution to avoid code bloat and reusability. Meanwhile, Binary trees showcased superior efficiency

when handling large datasets due to the binary search functionality and in-order storage.

Templates used in the settings menu also showed the user the benefits of code flexibility, allowing

all data types to be stored in a stack. This understanding is critical to programmers as it allows for

high code reuse and is an important topic to cover in an educational C++ report.

Exception handling in Unreal Engine is complex to integrate due to engine constraints but can ensure

robustness in error handling and avoid crashes. This topic was important to developers as they may

not always use the engine but frameworks where it is easily implementable, and it is a pivotal skill to

understand when coding at a high level.

Creating educational resources was pivotal to this project as it bridged the gap between theoretical

knowledge and practical understanding. The chosen topics were picked to cover a range of topics

and to show the reader the implementation in a modern game engine. The use cases were all based

on UI design and popular aspects of the main menu systems. Overall, this was a success in theory,

but further data could be used to measure the effectiveness of the resources.

Recommendations / Future Work
To improve upon this work, one of the first steps of picking the topics could be improved by getting a

professional opinion on what topics they would like to see undergraduates learn. Interviewing

several higher-ups in the industry would give better options than a personal opinion from the limited

18

resources collected. This step would direct the reader to understand relevant topics and allow

progression into the games industry.

When creating the topics in the engine, an external examination from a third party to review the

code and create testing would be advisable due to personal bias of how the code should be written,

such as coding standards and if all functions have been implemented correctly. This could allow for

cleaner code or better functionality, leading to a better educational standard.

Testing of the education piece would be the next step. This could include a sample group and

interview of the participants after completion to see if there are gaps in the resource or to hear their

review of them. This data could then be collected and used to improve them and future tutorials.

19

Bibliography
Aho, A. V., Ullman, J. D. & Hopcroft, J. E., 1983. Data Structures and Algorthims. s.l.:s.n.

Carey, J., Doshi, S. & Rajan, P., 2019. C++ Data Structures and Algorithm Design Principles. 1 ed.

s.l.:Packt Publishing .

Code Academy , 2022. Inheritance. [Online]

Available at: https://www.codecademy.com/resources/docs/cpp/inheritance

[Accessed 01 01 2024].

Deitel, P. & Deitel, H., 2016. C++ How to Program. 10 ed. s.l.:Pearson.

Dmitrović, S., 2020. Modern C++ for Absolute Beginners: A Friendly Introduction to C++ Programming

Language and C++11 to C++20 Standards. s.l.:Apress.

Drozdek, A., 2012. Data Structures and Algorithms in C++. 4 ed. s.l.:Cengage India.

Green, D., Guntheroth, K. & Mitchell, S. R., 2020. Exception Handling C++. s.l.:s.n.

Grimes, R. & Bancila, M., 2018. Modern C++: Efficient and Scalable Application Development.

s.l.:Packt Publishing.

Keploy, 2023. Black-Box Testing. [Online]

Available at: https://keploy.io/docs/concepts/reference/glossary/black-box-testing/

[Accessed 31 12 2023].

Keploy, 2023. White Box Testing. [Online]

Available at: https://keploy.io/docs/concepts/reference/glossary/white-box-testing/

[Accessed 31 12 2023].

Lippman, S., Lajoie, J. & Moo, B., 2012. C++ Primer. 5th ed. s.l.:Addison-Wesley Professional.

Li, Z. Y. G. & Roberts, D. E. W., 2023. Unreal Engine 5 Game Development with C++ Scripting. s.l.:s.n.

McDowell, G. L., 2015. Cracking the Coding Interview. 6th ed. s.l.:s.n.

Unreal Engine Docs, 2023. Unreal Engine 5 Migration Guide. [Online]

Available at: https://docs.unrealengine.com/5.3/en-US/unreal-engine-5-migration-guide/

[Accessed 01 01 2024].

Vandevoorde, D. & Josuttis, N., 2017. C++ Templates: The Complete Guide. Second Edition ed.

s.l.:Addison-Wesley Professional.

Weiss, M., 2013. Data Structures and Algorithm Analysis in C++. Fourth Edition ed. s.l.:Pearson.

20

Appendices

Appendix 1: Stack Menu Creation (Tutorial 1)

Stacks Menu Creation / UE5.3.2

Contents
Stacks Menu Creation / UE5.3.2 ... 20

Introduction .. 20

Requirements .. 21

Project Setup ... 21

Making Folder and Level Creation .. 21

Making the Settings Menu Class and Loading Up Rider ... 22

Designing the Menu .. 25

Tips and Tricks for Designing Menus .. 26

Adding Menu to the Screen .. 27

Making The Stack Class ... 28

Common issues ... 31

Using the Stack Class ... 31

More Menus.. 33

Making a Blueprint Class from SettingMenuController .. 34

Setting Up the Blueprint ... 35

Back Button Functionality ... 37

Extension Task ... 37

Introduction

In this Tutorial, we will be making a Stack Class using the Templates feature to make a settings menu

that is dynamic and scalable. Many games now take advantage of being able to pop up new menus

as the player clicks through the settings. To do this we need to make a system that controls multiple

menu screens simultaneously and displays them.

The Content has been broken down into steps please follow them in order as they build off each

other.

21

Requirements

This should work on any version of Unreal Engine but for this project it has been tested on 5.3.2.

Make sure to have Rider, Visual Studio, Or an IDE of your choosing installed. In this case, Rider is

used.

Project Setup

Create a project that uses the First-Person Template and uses the C++. I added the starter content

to get extra assets that will be used for a game loop further down the line. I would recommend

doing the same.

Making Folder and Level Creation

Once the project has been created make a folder in the Content Folder called StackMenu. This is

where we will keep the assets for this task.

In the Folder, Create a new Level and call it MenuScreen. This will make a new level for the menu to

be created on. Once opened, it will be black with no lighting.

22

Copy the Lighting folder over the First-Person Map and paste it into the new Level that you have

created. This will light up the world and give it a sky box. You may want to edit this to make your

menus look different.

Making the Settings Menu Class and Loading Up Rider

Next, we need to make the main Settings Menu. First, click onto the “C++ Classes -> Stack Project”

and right-click in the empty space. Press Create a “New C++ Class”.

Next Select All Classes and Search for the UserWidget Class that will be under the Visuals -> Widget

Tab.

Press next and Name the Widget Class as “SettingsMenu” and Create Class Button.

23

As it is the first time Loading Up a C++ Class Rider will Run for the first time make sure to press the

Trust and Open Button

This will open the Project in rider for the first time and will build the solution for you. This will take a

few minutes. You can check on the progress by clicking the loading bar at the bottom of the screen.

Wait till this is finished.

24

Once this has completed you need to save your Unreal Project by clicking File -> Save All. The

Closing the Unreal Project.

The In rider in the top right corner you can press the Run Button. This will now open the Project

using Rider and will allow us to Live Update the code.

Next Step is to create a new Widget Blueprint. Do this by going to All -> Content -> Stack Menu and

Right Clicking then Hovering over User Interface and selecting Widget Blueprint.

A Box will appear allowing you to select a Parent Class. In the box search for the Class, we just

Created Called SettingsMenu. Once Selected Rename it to BP_SettingsMenu.

25

You should now need a Widget Blueprint Class that has been Created. Double Click it to open the

Editor Window for Widget Class.

Designing the Menu

First thing to add to the SettingsMenu is a Canvas do this by searching in the Palette search box

found on the left-hand side. And once found drag it onto the Hierarchy which is just below this box.

This should then add a dotted box to viewport.

26

After this you will need to design your Settings Menus. This can be as simple as adding Buttons and a

Heading or adding a background. All these options will be found in the Palettes section but make

sure to add 3 Buttons. One for the Sound, one for Graphics and one for Gameplay as these are what

are going to be covered.

Something Nice and Simple Like this will do.

Tips and Tricks for Designing Menus

- Use Size Boxes to get the correct Size Box that you want.

- Try and use Horizontal or Vertical Columns to make sure Buttons Line up.

- You can place text inside the Buttons by Dragging Text into them in the editor.

- Make sure to name all the buttons Correctly to easily find them later.

- Add padding to each button or text to create gaps between each one.

- Import new Fonts into the game to make it look different.

- Change the colours of the buttons to your desired look.

27

If you want to copy the example above this the Hierarchy.

Once completed make sure to Save and Compile using the buttons in the Top Left of the Screen.

Adding Menu to the Screen

At the moment when clicking Play nothing is going to happen. This is because the Widget you have

created isn’t being added to the Viewport. To do this you need to find your Level Blueprint. To do

this above the window there is a Blueprints Panel open this and select Open Level Blueprints. This is

shown Below.

In the blueprint Window Add the Create Widget Node and select the BP_SettingsMenu that you

have Created. Finally add the Add to Viewport Node and Connect to the Pins together.

28

Now when the game begins it will add the menu to the screen. You will notice that the game is

spawning a first-person player. Do change this we will change the game mode. To do this go to Edit -

> Project Settings -> Maps and Modes -> Default GameMode and change it to GameMode.

This will set it to the base class gamemode where a first-person character isn’t spawned. You can

Change this in the future to support a custom Gamemode if you want to pursue further into the

project.

Making The Stack Class

Now we have the Menu first Menu Setup it is time to make the Stack Class. We are using a template

type so we can reuse this Stack Class with any Data type. To do this head to the C++ Classes Folder

and Create a New C++ Class. First make sure that is Class doesn’t derive from any parent Class by

Pressing None under the Common Classes Tab. And Name it StackClass.

It should now open in rider and look like the picture below.

The first step you need to do is add the template definer above the Class definition (Line 8) this will

tell the code that this is a template Class and will need to be defined.

29

The next step is to set up to function Headers in the header File. In this case we are going to add a

Push, Pop, IsEmpty and Peek function. Each of these functions have different input and return types

so make sure they match the code below. Make sure these are in the Public section of the header.

Make sure that the constructor and destructor class have curly brackets on the end. And delete the

versions in the CPP Files.

Finally make a private section of the header file and make a TArray of Type T and name it stack.

The next Step is making the Functions for the Stack Class. In the Header File Under the definitions,

you need to create the functions. This is done in the header file because of the Template Type. The

first is the Push Function. Make sure to add the Template Typename as we are using the T inputted.

This function simply adds the data to the Stack.

30

Now define the Pop Function. This function checks if the Stack is empty if it isn’t it will look for the

Last Element in the stack, remove it and then Return it. If it doesn’t exist it will return a default-

constructed T object.

Now make the Is Empty Function another simple one. Checks if the Stack size is equal to 0.

And finally, the peek Function. It checks for if it is empty and returns the last item on the Stack. But

this time doesn’t remove it.

If you need to Look at the Full File it is linked here :

AdvancedCPlusPlus/Source/AdvanceCPlusPlus/StackClass.h at main · chris-boyce/AdvancedCPlusPlus

(github.com)

Now you have added all of this save the file and return to the Unreal Engine Editor and Compile the

code. This is shown how to do below.

https://github.com/chris-boyce/AdvancedCPlusPlus/blob/main/Source/AdvanceCPlusPlus/StackClass.h
https://github.com/chris-boyce/AdvancedCPlusPlus/blob/main/Source/AdvanceCPlusPlus/StackClass.h

31

Congratulations if this compiles successfully. You have made a Stack Class. If this doesn’t work read

over the steps again and follow them to the tee.

Common issues

Make sure that the files are in the public folder.

Make sure to delete the Constructor and Destructor in the CPP.

Make sure that Type Name is above every Function.

Make sure it is all in the Header File.

Have A Look At : AdvancedCPlusPlus/Source/AdvanceCPlusPlus/StackClass.h at main · chris-

boyce/AdvancedCPlusPlus (github.com)

Using the Stack Class

Now we have created the stack class it is time to implement it. To do this create an C++ Actor Class

Called SettingsMenuController.

Open the code into rider. In this code you need to add functions called DisplayTopScreen,

RemoveTopScreen and AddToStack. As shown below.

https://github.com/chris-boyce/AdvancedCPlusPlus/blob/main/Source/AdvanceCPlusPlus/StackClass.h
https://github.com/chris-boyce/AdvancedCPlusPlus/blob/main/Source/AdvanceCPlusPlus/StackClass.h

32

If you are using rider, right click these functions and generate the Function Definitions and it will

create the function definitions in the CPP file for you. Do this for all 3 Functions. Make sure to added

BlueprintCallable to the two functions as these will be called from there later.

We also want to make a StackClass that will store are UUserWidgets. Make sure that you include

your StackClass.h in the header file at the top of the screen and UUserWidget* is a pointer. Rider will

tell you if you do not do this step.

Finally, you need to make 3 variables of UUserWidget* that store the menus that will appear after a

button is clicked. Make sure they are EditAnywhere so we can change them in the inspector and

Blueprint Read Only so they cant be changed.

Moving onto the CPP of SettingsMenuController you should have the 3 function definitions as well

as the BeginPlay, Constructor and Tick functions.

In the DisplayTopScreen Function you need the following code. This will look at the stack using the

peek function that we created. It will then add it to the viewport if it is valid.

33

The next step is Removing the Top Screen. In this function we will get the top widget and remove it

the pop it from the stack.

And finally, in the AddToStack Function you need to push the widget that you pass in onto the stack

and Display it to the top of the screen.

Look at what the script is meant to look like here:

Header : AdvancedCPlusPlus/Source/AdvanceCPlusPlus/SettingsMenuController.h at main · chris-

boyce/AdvancedCPlusPlus (github.com)

CPP : AdvancedCPlusPlus/Source/AdvanceCPlusPlus/SettingsMenuController.cpp at main · chris-

boyce/AdvancedCPlusPlus (github.com)

More Menus

This is all the code need for this menu system to work. The next step is to the next set of menus and

calling the functions. To do this create the Gameplay, Graphics and Audio Menus. Like we did in

Settings Menu. Make sure to derive the Class from UserWidget. See Example Below for Ideas.

https://github.com/chris-boyce/AdvancedCPlusPlus/blob/main/Source/AdvanceCPlusPlus/SettingsMenuController.h
https://github.com/chris-boyce/AdvancedCPlusPlus/blob/main/Source/AdvanceCPlusPlus/SettingsMenuController.h
https://github.com/chris-boyce/AdvancedCPlusPlus/blob/main/Source/AdvanceCPlusPlus/SettingsMenuController.cpp
https://github.com/chris-boyce/AdvancedCPlusPlus/blob/main/Source/AdvanceCPlusPlus/SettingsMenuController.cpp

34

Making a Blueprint Class from SettingMenuController

When you have made your menus create a blueprint derived class of SettingsMenuController. You

can do this by right clicking the C++ in the editor and selecting the option. Place this into your

StackMenu Folder. Make sure to name it BP_SettingsMenuController as it important to keep

blueprints separate but also know what class the derive from. See Below.

Place this Blueprint Class into the World.

35

After this set the variables we made such as Audio, Gameplay and Graphics menus into the variables

that we made. This will be under the detail tab when you select the BP_SettingsMenuController in

the world. Make sure these are set or it will crash.

Setting Up the Blueprint

Open the BP_SettingsMenu. It will likely display the menu you have made. Head over to the graph

section of the editor located in the top right corner.

In the constructor event, add the node Get Actor Of Class and set Actor Class to your

BP_SettingsMenuController. The from the exit node Promote it to a variable and call it Settings

Menu Controller. This gives you access to the Actor that we placed in the world.

36

Now create a function from when the button is pressed, you can do this by selecting the button and

pressing the create OnClick function shown below.

Now we need to call the function on the actor we created to do this. Get the Settings Menu

Controller and call the Add to Stack function we created. Also, from the Settings Menu Controller

add the corresponding menu and pass it in. Do this for all 3 submenus you have made.

Now when we click the button it should bring up the menu you selected.

37

Back Button Functionality

At the moment no functionality has been given to the back button therefore you cannot remove the

submenus once you have enabled them.

To do this you need to recreate the constructor blueprint like we did before in the

BP_GraphicsMenu, BP_AudioMenu and BP_GameplayMenu that you should have made.

After this create an On Click Event on the back button and run the function Remove Top Screen.

Now you should have a functional menu that can pop new menus up and remove the menus when

back is pressed. Congratulations

Extension Task

Can you now try and make a menu system that can go multi levels as shown below. Try adding a 3rd

layer to the menu system? You should have all the code needed just a small bit of blueprint

necessary.

38

39

Appendix 2: Binary Tree Creation (Tutorial 2)

Binary Tree Scoreboard / UE5.3.2

Contents
Binary Tree Scoreboard / UE5.3.2 ... 39

Introduction .. 39

Requirements .. 39

Data Tables and Structs .. 39

Creation of The Binary Tree Node Class ... 42

Creation of Binary Tree Class .. 43

Menu Creation .. 47

Scoreboard Manager Creation .. 48

Introduction

This tutorial will continue looking at advanced C++ programming and creating them in Unreal Engine.

In this tutorial, we will make a binary tree that stores player’s names and scores. There will

implement a search function so people can find their friends and their current score. This will be

using binary search and in-order search functions to see the benefits of each one.

This content assumes you have completed the Stack Menu Creation Tutorial, not because it will be

using any of the code but the fundamentals of using the Widget Creation Tools and Rider as this will

not be covered again.

Requirements

This should work on any version of Unreal Engine but for this project it has been tested on 5.3.2.

Make sure to have Rider, Visual Studio, Or an IDE of your choosing installed. In this case Rider is

used.

Also to make the CSV file Excel is needed; any version will work.

Data Tables and Structs

To store the data that we are going to display we are going to use Unreal Engine Data Tables. These

are a data store that use CSV files. To do this first we need to make a Struct that is going to hold

these. First make a new C++ Class that uses a UObject as it parent class and name it

BinaryTreeNode.

In the Header File Above the UCLASS() definition you need to make a USTRUCT(). This struct needs

to inherit off FTableRowBase.

40

Make sure to #include Engine/DataTable.h

The Struct needs to store an FString that is going to store the Name and an Int that will hold the

score. Make sure they are have the UPROPERY EditAnywhere and BlueprintReadOnly.

Make sure to Save and Compile.

Now you need to make a Data Table. It is under the Miscellaneous Section in Unreal Engine. Make

sure to put it in a folder that is easy to find and to name it appropriately. This is shown below.

41

Next you need to make an Excel File that is going to hold the data. Add the Titles RowName, Name

and Score. Add the data you want to store. Finally Save the document as an CSV file and place it

somewhere easily accessible.

42

Now you need to import the data into the Table. Do this by double-clicking the Data Table and

pressing the Import button and selecting your file. It should then bring in the data in the excel to

Unreal Engine.

Now we have the Data table set up it is time to make the binary tree. Head back to your

BinaryTreeNode C++ Class.

Creation of The Binary Tree Node Class

43

In the class, you now need to store the data on each node that is going to be in the tree. We are

going to store the Left and Right Binary Tree Node as well as the Scoreboard Data on each. Finally,

we need to make a constructor that takes these values as inputs.

Creation of Binary Tree Class

Now make a New C++ Class that Inherits from UObject called BinaryTreeClass. Make sure to include

your BinaryTreeNode.h

The First variable that we are going to need is a Root. This will be of type UBinaryTreeNode*. This

will store the entry point of are Binary Tree.

We need to create a constructor that will set this to null when created as it will not always be set

when the Binary Tree is Created.

The first Function that we will need to Create is the Insert Function. The Insert Function will need an

input variable of FScoreboard Data.

44

In the CPP add the insert function we will need to check where to place the new data inputted

because binary trees store the data in size order, this is done by running a recursive function until

the place in the tree is found. This diagram shows the checks the code is doing.

45

It is a lot of code to understand, so make sure to read through the comments to see which parts of

the code are linked to the flow diagram. Think of it as a filter that finds the right place for the data.

The following functions that need to be added to the BinaryTreeClass are the InOrderedTraversial

and ReverseOrderTranversal. This function take the Root Node and a TArrayPointer of

FScoreboardData that it will store all the data in either in order or in reverse order.

The functions in C++ are opposites of each other. In OrderTraversal will first look down the Left Child

Nodes and then to the right. And the Reverse Order, one will look from Right to Left. This will then

add them to the Array that was inputted.

46

The final Functions that need to be implemented are InOrderSearch and The BinarySearch; this will

take input from the Root Node for the binary tree and the search input. For the Ordered Search, this

is a string; for the Binary Search, it is an int. Its return type will be a UBinaryTreeNode*.

The binary tree search is more efficient as it can isolate the node the int is on quicker and with

fewer searches. It does this by splitting the tree seeing if the value is higher or low.

After all these functions have been implemented, you have completed the set up to the Binary Tree

Class.

47

Menu Creation

It is time to make the menu that is going to display the data to do this you need to make 2 C++

Classes the Inherit from UMG widget like we did in the last tutorial. One is the LeagueMenu and one

that is the LeagueTemplate.

Make both a Blueprint Derived Class and open the UMG editor. In the League Menu screen, make

sure to have 2 Textblocks where we will output the data, an editable textbox for the input of the

data, and a Scrollbox where we will add menu data.

In the LeagueTemplate, we will make one version of the table that will be repeated. Make sure to

include 3 TextBlocks where we can output are information. I added a background to make the table

look better. You can do the same.

48

Scoreboard Manager Creation

The next step is controlling the Menu based of the data. This will be done through a controller

system. Create a C++ class based of an actor. Name it ScoreboardManager. I will run through the

variables.

Variables

Type of Data Name Reason

UDataTable* ScoreboardDataTable Holds the data table to read and
implement into a binary tree

UScrollBox* Scrollbox Holds a reference to the scroll box
where we will add templates.

TSubClassOf<UUserWidget> Template Widget Holds a reference to the Template that
we made to spawn more in and
manipulate the text inside.

FScoreboardData Output Text Variable to hold the output from
reading the binary tree.

UBinaryTreeClass* ScoreboardBinaryTree Holds the Binary Tree

49

Functions

BeginPlay

The first function we are going to look at is the BeingPlay()

Step 1: Create the BinaryTreeClass and assign it to the ScoreBoardBinaryTree

Step 2: Check the Data Table isn’t empty.

Step 3: Make a TArray that is filled with the Datatables names.

Step 4: For loop that loops through the whole data table.

Step 5: Get the data from each row via the Name of the Row

Step 6: Create a temp FScoreboardData and assign the values.

Name Input Return Type Notes

CreateTemplate None Void
Creates and edits the

template to the scroll box

SearchBinaryTree Int Void
Used as an overload function

to run the binary tree search

SearchBinaryTree String Void
This is an overload function to

run the in-order search.

ResultHander UBinaryTreeNode* Void

Takes the output of the search

and handles the changing on

the output text.

BeginPlay None Virtual Void

This is inputted by default but

will be used to transfer data to

the binary tree

InitSearch FString Void

Blueprint callable function

that get the inserted word in

the text box

50

Step 7: Insert this FscoreboardData to the binary Tree.

CreateTemplate

Check if the scroll box has been assigned. Then, create a TArray for the data to be transferred to

InOrder. Next run the Reverse Order Function that we created and pass in the root of the tree and

the array.

You then want to run a loop the length of the returned array. In the loop turn the data into a

FScoreboard Data from the array. Next, create a new widget declare in the ULeagueTemplate

widget as the class and pass it in the GetWorld function and the Template Widget. Next run the

ChangeText function and pass in the data. Finally add it the Scroll Box as a child.

InitSearch

In the InitSearch Function we are filtering to see if the input is numeric. To do this get the inputed

Fstring and run a IsNumeric check. If it is covert it to a int and pass it into the SearchBinaryTree

function. If it isn’t don’t change the string and pass it to the SearchBinaryTree function as it is an

overloaded function.

51

SearchBinaryTree (Overloaded Function)

In the function call the corresponding function. For an int call the binary search and for text call the

ordered search function. Finally pass the results into the result handler.

Results Handler

In the results handler check if a result has been passed in and set the output text to the value that is

passed in, make sure to have a else statement that resets when there isn’t a player with the same

inputed.

52

Blueprint

Make a blueprint variant of the C++ Class and name it BP_ScoreManager. Make sure to assign the

variable in the inspector.

In the blueprint of LeagueMenu on the construct function get the scoreboard class and set the scroll

box variables. This needs to be here due to the scroll box being destroyed when unloading the

menu. Then run the Create Template function.

 In this blueprint as well you need to make a OnTextChange function from the editable text box. You

need to find the Scoreboard Manager and then run the Init search function as well as link the Output

Text variable and assign it to the text box in the menu.

In the League Template you need to pass in the variables for the Name, Score and Placement you

need to make sure this text is set as a variable.

Also you need to set up a function to remove it from the scene when destruct is called as it is a child

of the scoreboard

These Function in C++ will look like this

53

Once this is all done it should be all linked and should now be able to run the code. Make sure to

compile and save all blueprint and scripts. Congratulations.

Extension Task

Try adding more data to the binary tree at runtime to create a scoreboard that updates. All the

functionality is there. A hint will be to make another input box and once filled in to add it to the tree.

You many want to do this on a button press. You will also need to refresh the template boxes. You

make made the functionality for this already.

54

Appendix 3: Link List Creation (Tutorial 3)

Linked List / UE5.3.2

Contents
Linked List / UE5.3.2 .. 54

Introduction .. 54

Requirements .. 54

Menu System .. 54

BattlePassMenu Design .. 55

BattlePassTemplate Design ... 55

Linked List Class... 55

Function Description ... 56

Function Implementation ... 56

BattlePassManager Class .. 58

BattlePassTemplate Class ... 60

BattlepassTemplate Blueprint .. 61

Battle Pass Manager Blueprint ... 62

In Engine Setup ... 62

Gun Render Class .. 62

Introduction

This tutorial will continue looking at advanced C++ programming and creating them in Unreal Engine.

In this tutorial we are going to make a Linked List that will display a equip system in a battle pass so

the user can change the currently equipped weapon in game. Please complete the previous 2

tutorials not because we are using the code but the fundamentals of menu creation will be used.

Requirements

This should work on any version of Unreal Engine but for this project it has been tested on 5.3.2.

Make sure to have Rider, Visual Studio, Or an IDE of your choosing installed. In this case Rider is

used.

Menu System

We are going to follow the same principles of making a scroll box and inserting a template into it and

changing the data inside. First of all you want to make a new UI Widget as a C++ Class and name

BattlePassMenu, and another called BattlePassTemplate. This is the example that we are going to be

using. Make them into a Blueprint version after and design them to include a scroll box.

55

BattlePassMenu Design

BattlePassTemplate Design

Make sure to include a Item Name, Image and a button to equip the weapon

Linked List Class

As we have done before we are going to make a base class of a UObject. This should be called

LinkedListClass. In this script you need to make a struct called FNode. This node will be storing all the

data as well as the pointers to the next item in the list. This should be placed outside the UObject

class.

We will also need to make a struct that will hold all the data on the items. This should be called

FBattlePassDataStruct. This should include a UTexture2D that will store the image, a FString that

holds the name, a Boolean property that holds the unlock status and a UMaterial that holds the gun

56

texture. Make sure to include the USTRUCT at the top or blueprint will not be able to access this

data.

In the body of the Linked List Class you need to make a variable of the FNode and name it First as

this is are access point to the list. There also needs to be a constructor that sets the First to nullptr as

you make create a linked list before assigning the first value.

Function Description

Functions Name Return Type Input Class Description

AddNode Void FBattlePassDataStruct Inserts node at end of the list

InsertDataAtBeginning Void FBattlePassDataStruct Inserts node at the start of list

DeleteAtPosition Void Int Deletes Data at int position in
the list

Int GetPos Int Fstring Gets the passion of the data
using the FString Name

Function Implementation

AddNode()

The add node function first creates a new node using the data provided. It then checks the first place

on the linked list and if it empty will fill the first place. Else it will go through the Linked List by

making the current node the one it is checking and seeing if it has a “Next” place if it doesn’t it will

the assign the Next node to the inputted data.

57

InsertDataAtBeginning()

Inserting the node at the beginning is very simple. It first makes the data inputted into a new node. It

then assigns the new nodes next pointer to the first of the current linked list and then sets the new

node to the first in the chain.

DeleteAtPosition()

This function is more complicated. It first checks there is a valid first entry into the linked list. If the

inserted int is zero it will then set the first point to a temporary variable and traverse to the next on

of the list and set that as the “First” node and after delete the temporary node.

58

If the data being deleted isn’t the first node it will set the first node to the current position and then

will use a while loop to traverse down the linked list it will save the previous node. Once it reaches

the position it was meant to it will then run the if statement to check it not null and will the set the

previous node to the current node and then delete the current node. There is then a check if it the

number input is too large for the list and will output a log.

GetPosition()

Get position uses a while loop to traverse the linked list and compares the inputed data to the

Fstring that is part of the struct. It does this a counts the loop. Once it finds this it returns the loop if

not it returns a negative integer. That is the Link List Class setup.

BattlePassManager Class

We are going to use the same system of a controller that we have before to access the link list class.

To do this make a C++ that inherits from the AActor Class and make a Blueprint derived class from

this. In the C++ we are going to need several functions and variables listed below.

Functions Returning Inputs Description

CreateTemplate Void Nothing This will create the
templates for the
data to be passed in

HoverTextureChange Void UMaterial* Function that will
change when
hovering over a
button

ButtonTextureAssign Void UMaterial* Function that will
assign the texture to
the gun

59

UnHoverTextureChange Void Nothing Function that will
change the texture
back to default.

LoopWithDelay(); void Nothing Function that delays
the spawn time to
create an animation
effect of the UI

Variable Type Description

BattlePassLinkedList ULinkedListClass* Holds the Linked List with all
the data

BattlePassArray TArray<FBattlePassDataStruct> Holds the initial data for which
the link list reads

ScrollBox UScrollBox* Holds the reference to the
scrollbox

TemplateWidget TSubclassOf<UUserWidget> Reference to the template
class to spawn in

EquippedGunTexture; UMaterial* Local Gun texture to refer to
when applying the texture

CurrentIndex Int Used for creating the
templates

BeginPlay()

The begin play function needs to create the linked list and assign the equipped gun a value.

60

CreateTemplate()

When the create template is called it will check the scroll box is set and set the index to 0 and then

call the function LoopWithDelay.

LoopWithDelay()

In this function it will get the length of the battlepass array and loop that many times. It will get the

data from the array and create a local value. It then makes a template like we did the previous

tutorial. It then calls the function on the Widget to change the values and adds it as a child to the

scroll box. It then waits for 0.1 seconds to run the function again using the time manager.

Hover() and Unhover()

In these functions they set the model to the current texture or back to the default.

ButtonTextureAssign()

This changes the local to the texture passed in.

BattlePassTemplate Class

One of the function is ChangeItem sets the variables passed in into the local variables that hold

them. A UTextblock, UImage and UMaterial that are used in blueprint.

61

The second is a remove template function for when it is being destroyed.

BattlepassTemplate Blueprint

On the Initialize it needs to set the C++ variable to the blueprint variants from the UI graph.

When the button is hovered over to equip or view the skin it should run the on hover function and

pass in the local material.

It should then run the unhover function when the cursor has left the button.

On the button click it should then run the Button texture assign and pass in the material

62

Battle Pass Manager Blueprint

On the construction function it should get the battle pass manager and assign the scrollbox to the

variable in the script, it should then run the create template function. Finally it should find the gun

render and toggle it render.

On the destruct it should find the gun render and disable the render

In Engine Setup

In the engine you need to add all the content to the Battle Pass Array. This includes a screenshot of

the gun the name the unlock status and the gun texture.

You also need to add the template to the battle pass manager, or it will not spawn in.

Gun Render Class

After this insert a new C++ class that is called AGunRender that is inherited from AActor. In this

header file add a reference to the Static Mesh and a function called GunChangeTexture that has a

UMaterial Passed in

63

In the function for Change Texture you need to find the component of the Gun Mesh then check that

it is valid and the input texture is valid then set the material.

Finally in the blueprint you need to set the visibility of the gun renderer when it starts and when the

Renderer is toggled. Make sure to pass in the static mesh.

Make sure to Compile and save all your work.

Now that you have completed all the steps and linked all the blueprint and C++ you should now have

a project that looks similar to this.

64

Extension Task

Use the data saving system in unreal engine to load this gun into a playable map. This will use the

USaveGameData function similar to unitys player prefs functions.

Saving and Loading Your Game | Unreal Engine 4.27 Documentation

This is a link to the documentation that covers all the code that you will need. Here is an example

video.

https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/SaveGame/

